Как научиться быстро считать в уме взрослому?

Как научиться быстро считать в уме?

Как давно вы считали в уме, а не столбиком, и уж тем более не с помощью калькулятора? Между прочим, считать в уме не только модно, но и полезно: так вы развиваете краткосрочную память, концентрацию и внимание. А ещё, какой же кайф испытываешь, когда можешь посчитать, сколько тебе должны дать сдачи, пока стоишь в очереди, м-м-м…

Всего несколько месяцев ежедневных тренировок по 5-10 минут, и вы почувствуете, как ускорился ваш мозг.

Сложение

Начнём с простого — сложения однозначных чисел. Научившись мгновенно складывать однозначные числа, вы сможете легко складывать и многозначные числа, потому что все расчёты сводятся к выполнению типовых действий. Вы в этом скоро убедитесь.

Сложение однозначных чисел

С примерами, результаты которых находятся в пределах 10 проблем нет. Эти комбинации чисел нужно просто запомнить, как основу основ.

А вот для примеров «с переходом через 10» уже есть методика — «опора на десяток». Суть в том, чтобы довести одно слагаемое до 10, а потом из второго слагаемого вычесть столько же, сколько мы прибавили к первому.

Например, нам нужно сложить 5 и 8:

  1. Числу 5 не хватает до 10 ещё столько же — 5.
  2. Теперь представим 8 как сумму 5 и ещё какого-то числа (это 3).
  3. И прибавим к 5 ту часть числа 8, которой недостаёт до 10, а затем и остаток. Получится 10 и 3, то есть 13.

Сложение многозначных чисел

Принцип сложения многозначных чисел — складывать друг с другом одинаковые разряды: тысячи с тысячами, сотни с сотнями, десятки с десятками, единицы с единицами.

Например, нам нужно сложить 245 и 917:

  1. 245 состоит из трёх разрядов — 200, 40 и 5. А 917 из 900, 10 и 7.
  2. Сложим разрядные части друг с другом:

200 + 900 = 1100, 40 + 10 = 50, 5 + 7 = 12.
А теперь сложим получившиеся числа в обратном порядке, «закрывая» нули:

Вычитание

Как и со сложением, с вычитанием однозначных чисел из однозначных ничего сложного нет. А при вычитании однозначного числа из двузначного удобно пользоваться тем же правилом «опоры на десяток».

Вычитание однозначных числа

Например, нужно вычесть 13 − 7:

  1. Убираем у 13 столько, чтобы получилось 10 — то есть 3.
  2. Столько же убираем и у 7 — получается 4.
  3. Теперь просто вычитаем 4 из 10.

Вычитание многозначных чисел

Здесь всё даже проще, чем со сложением многозначных чисел, потому что на разрядные части нужно разложить только то число, которое вычитаем.

Например, нужно вычесть 734 − 427:

  1. Раскладываем 427 на разряды: 400, 20 и 7. Теперь последовательно вычитаем их из 734.
  2. Вычесть 734 − 400 очень просто, потому что действие происходит только с сотнями. Грубо говоря, мы вычитаем 4 из 7 — получаем 3, вернее, 334.
  3. С десятками всё аналогично: вычитаем 30 − 20, получаем 10 — 314.
  4. Теперь вычитаем единицы через десяток: 314 − 7.

Убираем 4 из 314 и 7, получаем 310 − 3. Ну а тут уже совсем просто — ответ 307.

Небольшие хитрости

Чтобы вычитать 7, 8 и 9 было проще, часто прибегают к следующим правилам:

    При отнимании 9 из числа сначала вычитают 10, а затем добавляют 1:

321 − 9 = 321 − 10 + 1 = 312
При отнимании 8 из числа сначала вычитают 10, а затем добавляют 2:

321 − 8 = 321 − 10 + 2 = 313
При отнимании 7 из числа сначала вычитают 10, а затем добавляют 3:

321 − 7 = 321 − 10 + 3 = 314

Умножение

Это когда несколько раз складывают одно и то же. Например, 7 × 3 = 7 + 7 + 7 = 21.

Чтобы научиться быстро умножать любые числа в уме (кроме совсем уж космических), нужно идеально умножать однозначные числа, то есть знать таблицу умножения.

Причём идеально знать её необязательно, достаточно запомнить для себя опорные числа, которые будут помогать в вычислениях. Умножим 6 × 7. Мнемотехнически мы знаем что 6 × 6 = 36. То есть к 36 нужно прибавить ещё 6, чтобы получился ответ — 42.

Считается, что из всех примеров в таблице умножения 7 × 8 самый сложный. Чтобы запомнить ответ есть отличное правило «пять шесть семь восемь»: 56 = 7 × 8.

Умножение однозначного числа на двузначное

  1. В первую очередь мы раскладываем 387 на разряды — 300, 80 и 7 — и умножаем каждый из них на 8.
  2. Начинаем с сотен: 300 × 8 — это то же самое, что умножить 3 × 8, а потом к результату дописать два нуля. То есть:

3 × 8 × 100 = 24 × 100 = 2400.

По аналогии, 80 × 8 = 640, 7 × 8 = 56.
А теперь мы складываем получившиеся числа, объединяя их по разрядам:

2400 + 640 + 56 = 2000 + 400 + 600 + 40 + 50 + 6 = 2000 + (400 + 600) + (40 + 50) + 6 = 2000 + 1000 + 90 + 6 = 3000 + 90 + 6 = 3096

Небольшие хитрости

    Любое число легко умножить на 9: нужно просто умножить на 10 (или дописать в конце ноль), а затем отнять исходное число.

47 × 9 = (47 × 10) − 47 = 470 − 47 = 423
Некруглое число можно легко умножить на 2, сначала округлив его до удобного ближайшего значения.

Например, 237 × 2. Сначала проще умножить 240 × 2 = 480. А потом вычесть из результата 6 (3 × 2 = 6 — ведь 3 нам не хватало до 240). Итого:

237 × 2 = 240 × 2 − (3 × 2) = 476
Чтобы умножить любое двузначное число на 11, нужно сложить две цифры этого двузначного числа друг с другом, а затем вписать её между цифрами исходного числа:

Правда, если сумма двух цифр исходного числа больше 10, нужно поставить разряд единиц между цифрами исходного числа, а десяток прибавить к левой цифре:

Умножение двузначных чисел

Хотя кажется, что умножать двузначные числа — вершина ментальных вычислений, решать такие примеры не сильно сложнее, чем в предыдущем пункте. Давайте разберём на примере.

  1. Разобьём 34 на 30 и 4, чтобы было проще, а затем умножим каждое на 83.
  2. 83 умножить на 30 просто — это как умножить 83 × 3, а потом умножить результат ещё на 10. Как умножать однозначные и двузначные числа мы разобрались. Считаем:

83 × 3 = 80 × 3 + 3 × 3 = 240 + 9 = 249. Значит, 84 × 30 = 2490.
Теперь умножим

83 × 4 = 80 × 4 + 3 × 4 = 320 + 12 = 332.
Сложим результаты:

2490 + 332 = 2000 + 400 + 300 + 90 + 30 + 2 = 2000 + 700 + 120 + 2 = 2822.

Деление

Это операция, обратная умножению. Начнём снова с самого простого.

Деление двузначного числа на однозначное

Разделим 48 : 3. Основная задача — подобрать число, которое можно умножить на 3 и получить 48. Из таблицы умножения мы помним, что единственное число, результат умножения которого на 3 в конце имеет цифру 8 — это 6. А 3 × 6 = 18. То есть, у нас остаётся 30 : 3 = 10. Итого, получается 48 : 3 = 16.

Деление многозначного числа на однозначное

Разделим 6475 : 7. В подобных примерах главная задача — «взять» максимальные «круглые» части, которые можно разделить на 6 без остатка.

  1. Выделим из 6475 самую большую часть, которую можно разделить на 7 без остатка. 6475 близко к 7000 (то есть 7 × 1000), значит, можно попробовать взять 900 × 7 = 6300. Отлично!
  2. Остаётся 175. Таким же образом, выделяем из 175 самое большое число, которое можно разделить на 7 по таблице умножения — это 140. А 140 : 7 = 20. Запомним это число и вычтем 175 − 140. Сотни в результате дают ноль, а 7 − 4 = 3. То есть остаток на данный момент — 35.
  3. Вспоминаем, что по таблице умножения 7 × 5 = 35, и складываем все получившиеся числа: 900 + 20 + 5 = 925.

Деление на двузначное число

С делением на двузначное число всё гораздо интереснее. Задача в том, чтобы найти пределы, в которых лежит результат.

Например, разделим 6351 : 73:

  1. Сначала попробуем угадать, в каком десятке находится результат. Помним, что по таблице умножения 7 × 8 = 56, поэтому пробуем умножить 73 × 80 = 5840. Это максимально близкий десяток, потому что если прибавить ещё 730 (то есть 73 × 10), получится уже 6570 — больше чем нужно. Следовательно, наше число лежит в пределах между 80 и 90.
  2. Теперь посмотрим на последние цифры наших чисел — 1 и 3. Из таблицы умножения мы помним, что только одно число при умножении на 3 на на конце даёт 1 — это 7. Пробуем умножить 73 × 7 = 511. Складываем 5840 + 511 = 6351. Ура, ответ 87!

Небольшие хитрости

    Некруглые числа можно легко делить на 2, округляя их. Например, 358 делим на 2. Округлим 358 до 360, а затем уже его разделим на 2 — получим 130. А затем вычтем и этого числа 1 (получились в результате деления на 2 прибавленной 2).

358 : 2 = 360 : 2 − 2 : 2 = 130 − 1 = 129

  • Существует закономерность, по которой умножение на 5 можно почти приравнять к делению на Например, если умножить 47 × 5 = 235, а если разделить 47 : 2 = 23,5. Магия, да? То есть чтобы умножить любое число на 5, его нужно сначала разделить на 2, а затем умножить на 10.
  • Чтобы умножить число на 25, порой проще разделить его на 4, а затем умножить на 100 (или дописать два нуля):

    12 × 25 = 12 : 4 × 100 = 3 × 100 = 300

    Этих способов достаточно, чтобы тренироваться уверенно считать в уме. Помните, что делать это нужно регулярно, уделяя всего по 5–10 минут каждый день. Постарайтесь поймать свой ритм, чтобы решение таких задачек приносило удовольствие. И упирайте на правильность ответов, а не скорость — она придёт со временем. И не бросайте.

    А если вам нужна помощь в решении более сложных задач, которые уже нельзя просчитать в уме, вам с радостью помогут специалисты Мультиворка.

    Эффективные способы быстрого счета в уме

    Многие спрашивают, как научиться быстро считать в уме, чтобы это выглядело незаметно и неглупо. Ведь современные технологии позволяют меньше пользоваться своей памятью и умственными способностями. Но иногда нет под рукой данных технологий и порой легче и быстрее посчитать что-то в уме. Многие люди начали считать на калькуляторе или телефоне даже элементарные вещи, что также не очень хорошо. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него. Возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят научиться организовывать себя в различных жизненных ситуациях. Кроме того, умение считать в уме, несомненно, положительно скажется на имидже ваших интеллектуальных способностей и выделит вас среди окружающих «гуманитариев».

    1. Способы быстрого счета
    2. Вычитание 7, 8, 9
    3. Умножение на 9
    4. Деление и умножение на 4 и 8
    5. Умножение на 5
    6. Умножение на 25
    7. Умножение на однозначные числа
    8. Определение диапазонов
    9. Раскладка на десятки и единицы
    10. Мысленная визуализация умножения в столбик
    11. Частные методики умножения двузначных чисел до 30
    12. Умножение на 11
    13. Квадрат суммы, квадрат разности
    14. Опорное число
    15. Заключение

    Способы быстрого счета

    Существует определенный набор простейших арифметических правил и закономерностей, которые не только нужно знать для устного счета, но и постоянно держать в голове, чтобы в нужный момент оперативно применить самый эффективный алгоритм. Для этого необходимо довести их использование до автоматизма, закрепить в машинальной памяти, чтобы от решения самых простых примеров успешно перейти к более сложным арифметическим действиям. Вот основные алгоритмы, которые нужно знать, помнить и применять мгновенно, автоматически:

    Вычитание 7, 8, 9

    Чтобы вычесть 9 из любого числа, нужно вычесть из него 10 и прибавить 1. Чтобы вычесть 8 из любого числа, нужно вычесть из него 10 и прибавить 2. Чтобы вычесть 7 из любого числа, нужно вычесть из него 10 и прибавить 3. Если обычно вы считаете по-другому, то для лучшего результата вам нужно привыкнуть к этому новому способу.

    Умножение на 9

    Быстро умножить любое число на 9 можно при помощи пальцев рук.

    Деление и умножение на 4 и 8

    Деление (или умножение) на 4 и на 8 являются двукратным или трехкратным делением (или умножением) на 2. Производить эти операции удобно последовательно.

    Например, 46*4=46*2*2 =92*2= 184.

    Умножение на 5

    Умножать на 5 очень просто. Умножение на 5, и деление на 2 – это практически одно и то же. Так 88*5=440, а 88/2=44, поэтому всегда умножайте на 5, поделив число на 2 и умножив его на 10.

    Умножение на 25

    Умножение на 25 соответствует делению на 4 (с последующим умножением на 100). Так 120*25 = 120/4*100=30*100=3000.

    Умножение на однозначные числа

    Чтобы быстро считать в уме, полезно уметь умножать двузначные и трехзначные числа на однозначные. Для этого нужно умножать двух- или трехзначное число поразрядно.

    Например, умножим 83*7.

    Для этого сначала умножим 8 на 7 (и допишем ноль, так как 8 — разряд десятков), и прибавим к этому числу произведение 3 и 7. Таким образом, 83*7=80*7 +3*7= 560+21=581.

    Возьмем более сложный пример: 236*3.

    Итак, умножаем сложное число на 3 по разрядно: 200*3+30*3+6*3=600+90+18=708.

    Определение диапазонов

    Чтобы не запутаться в алгоритмах и по ошибке не выдать совсем неверный ответ, важно уметь строить примерный диапазон ответов. Так умножение однозначных чисел друг на друга может дать результат не более 90 (9*9=81), двузначных — не более 10 000 (99*99=9801), трехзначных не более — 1 000 000 (999*999=998001).

    Раскладка на десятки и единицы

    Способ заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

    63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 +3*5=4800+300+240+15=5355

    Проще такие примеры решаются в 3 действия:

    1. Сначала умножаются десятки друг на друга.
    2. Потом складываются 2 произведения единиц на десятки.
    3. Затем прибавляется произведение единиц.

    Схематично это можно описать так:

    — Первое действие: 60*80 = 4800 — запоминаем
    — Второе действие: 60*5+3*80 = 540 – запоминаем
    — Третье действие: (4800+540)+3*5= 5355 – ответ

    Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

    Мысленная визуализация умножения в столбик

    56*67 – посчитаем в столбик. Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа.

    Но его можно упростить:
    Первое действие: 56*7 = 350+42=392
    Второе действие: 56*6=300+36=336 (ну или 392-56)
    Третье действие: 336*10+392=3360+392=3 752

    Частные методики умножения двузначных чисел до 30

    Преимуществом трех способов умножения двузначных для устного счета состоит в том, что они универсальны для любых чисел и при хорошем навыке устного счета, они могут позволить вам достаточно быстро прийти к правильному ответу. Однако эффективность умножения некоторых двузначных чисел в уме может быть выше за счет меньшего количества действий при использовании специальных алгоритмов.

    Умножение на 11

    Чтобы умножить любое двузначное число на 11, нужно между первой и второй цифрой умножаемого числа вписать сумму первой и второй цифры.

    Например: 23*11, пишем 2 и 3, а между ними ставим сумму (2+3). Или короче, что 23*11= 2 (2+3) 3 = 253.

    Если сумма чисел в центре дает результат больше 10, тогда добавляем единицу к первой цифре, а вместо второй цифры пишем сумму цифр умножаемого числа минус 10.

    Например: 29*11 = 2 (2+9) 9 = 2 (11) 9 = 319.
    Быстро умножать на 11 устно можно не только двузначные числа, но и любые другие числа.

    Например: 324 * 11=3(3+2)(2+4)4=3564

    Квадрат суммы, квадрат разности

    Для того чтобы возвести в квадрат двузначное число, можно воспользоваться формулами квадрата суммы или квадрата разности. Например:

    23²= (20+3)2 = 202 + 2*3*20 + 32 = 400+120+9 = 529

    69² = (70-1)2 = 702 – 70*2*1 + 12 = 4 900-140+1 = 4 761

    Возведение в квадрат чисел, заканчивающихся на 5.Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу дописываем 25.

    25² = (2*(2+1)) 25 = 625

    85² = (8*(8+1)) 25 = 7 225

    Это верно и для более сложных примеров:

    155² = (15*(15+1)) 25 = (15*16)25 = 24 025

    Методика умножения чисел до 20 очень проста:

    16*18 = (16+8)*10+6*8 = 288

    Доказать правильность этого метода просто: 16*18 = (10+6)*(10+8) = 10*10+10*6+10*8+6*8 = 10*(10+6+8) +6*8. Последнее выражение и является демонстрацией описанного выше метода. По сути, этот метод является частным способом использования опорных чисел . В данном случае опорным числом является 10. В последнем выражении доказательства видно, что именно на 10 мы умножаем скобку. Но в качестве опорного числа можно использовать и любые другие числа, из которых наиболее удобными являются 20, 25, 50, 100…

    Опорное число

    Посмотрите на суть этого метода на примере умножения 15 и 18. Здесь удобно использовать опорное число 10. 15 больше десяти на 5, а 18 больше десяти на 8.

    Для того, чтобы узнать их произведение, нужно совершить следующие операции:

    15*18

    1. К любому из множителей прибавить число, на которое второй множитель больше опорного. То есть прибавить 8 к 15, или 5 к 18. В первом и втором случае получается одно и то же: 23.
    2. Затем 23 умножаем на опорное число, то есть на 10. Ответ: 230
    3. К 230 прибавляем произведение 5*8. Ответ: 270.

    Опорное число при умножении чисел до 100.Наиболее популярной методикой умножения больших чисел в уме является прием использования, так называемого, опорного числа
    Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100.
    Методика использования опорного числа зависит от того, являются ли множители больше или меньше опорного числа. Тут возможны три случая. Покажем, все 3 методики на примерах.
    Оба числа меньше опорного (под опорным). Допустим, мы хотим умножить 48 на 47.
    Эти числа находятся достаточно близко к числу 50, а следовательно удобно использовать 50 в качестве опорного числа.
    Чтобы умножить 48 на 47, используя опорное число 50, нужно:

    47*48

    1. Из 47 вычесть столько, сколько не хватает 48 до 50, то есть 2. Получается 45 (или
    из 48 вычесть 3 – это всегда одно и то же)
    2. Дальше 45 умножаем на 50 = 2250
    3. Затем прибавляем 2*3 к этому результату – 2 256

    50 (опорное число)

    Если числа меньше опорного, то из первого множителя вычитаем разность между опорным числом и вторым множителем. Если числа больше опорного, то к первому множителю прибавляем разность опорного числа и второго множителя .

    Одно число под опорным, а другое над.Третий случай использования опорного числа – когда одно число больше опорного, а другое меньше. Такие примеры решаются не сложнее, чем предыдущие. Меньший множитель увеличиваем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей. Или больший множитель уменьшаем на разность между вторым множителем и опорным числом, результат умножаем на опорное число и вычитаем произведение разностей опорного числа и множителей.

    (52-5)*50-5*2=47*50-10=2340 или (45+2)*50-5*2=47*50-10=2340

    При умножении двузначных чисел из разных десятков в качестве опорного числа удобнее
    брать круглое число , которое больше большего множителя.

    27*89

    Таким образом, с помощью использования одного опорного числа можно умножать большую комбинацию двузначных чисел. Описанные выше методики можно разделить на универсальные (подходящие для любых чисел) и частные (удобные для конкретных случаев).

    В крайнем случае, можно воспользоваться «крестьянским» счетом. Чтобы умножить одно число на другое, допустим 21*75, нам нужно записать числа в две колонки. Первое число левой колонки 21, первое число правого столбика 75. Затем числа стоящие в левой колонке делить на 2 и отбрасывать остаток, пока не получим единицу, а числа в правой колонке умножаем на 2. Все строчки, имеющие четные числа в левой колонке вычеркиваем, а оставшиеся числа в правой колонке складываем, у нас получается точный результат.

    21*75

    Чтобы научиться быстро считать в уме, нужна практика, нет волшебных методик, чтобы с первого раза начать быстро считать в голове, необходимо постоянно тренировать свой мозг и заставлять его быстро работать и считать.

    Заключение

    Как и все способы вычислений, данные методы быстрого счета имеют свои достоинства и недостатки:

    ПЛЮСЫ:

    1.С помощью различных методов быстрых вычислений даже самый малообразованный человек может считать.
    2. Способы быстрого счета могут помочь избавиться от сложного действия, путем замены его на несколько более простых.
    3.Способы быстрого счета полезны в ситуациях, когда нельзя воспользоваться умножением в столбик.
    4.Способы быстрого счета позволяют сократить время вычислений.
    5.Устный счет развивает умственную деятельность, что помогает быстрее ориентироваться в сложных жизненных ситуациях.
    6. Техника устного счета делает процесс вычислений более увлекательным и интересным.

    МИНУСЫ:

    1.Зачастую, решать пример, пользуясь способами быстрого счета, оказывается дольше, чем просто перемножать в столбик, так как приходится выполнять большее количество действий, каждое из которых проще первоначального.
    2.Бывают ситуации, когда человек от волнения или еще чего-то забывает способы быстрого счета или вовсе — путается в них; в таких случаях ответ получается неправильным, а способы являются фактически бесполезными.
    3.Не для всех случаев разработаны способы быстрого счета .
    4.Вычисляя с использованием техники быстрого счета, нужно держать множество ответов в голове, в чем можно запутаться и прийти к ошибочному результату.

    Несомненно, практика играет важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые способны считать в уме сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать арифметические операции, которые не каждый человек и в столбик сможет посчитать. Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме.

    Изучив многие подходы к обучению навыку считать устно, можно выделить 3 основных составляющих данного навыка:

    1. Способности. Способность концентрировать внимание и умение удерживать в краткосрочной памяти несколько вещей одновременно. Предрасположенность к математике и логическому мышлению.

    2. Алгоритмы. Знание специальных алгоритмов и умение оперативно подобрать нужный, максимально эффективный алгоритм в каждой конкретной ситуации.

    3. Тренировка и опыт, значение которых для любого навыка никто не отменял. Постоянные тренировки и постепенное усложнение решаемых задач и упражнения позволят вам улучшить скорость и качество устного счета. Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм. Однако не стоит недооценивать важность первых двух составляющих, поскольку имея в своем арсенале способности и набор нужных алгоритмов, вы сможете удивить даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

    Устный счет: как научиться считать в уме

    Математику уже за то любить следует, что она ум в порядок приводит» – говорил Михаил Ломоносов. Умение считать в уме остается полезным навыком и для современного человека, несмотря на то, что он владеет всевозможными устройствами, способными считать за него.

    Но возможность обходиться без специальных девайсов и в нужный момент оперативно решить поставленную арифметическую задачу – это не единственное применение данного навыка. Помимо утилитарного назначения, приемы устного счета позволят вам научиться организовывать себя в различных жизненных ситуациях.

    К примеру, они позволяют грамотно и оперативно планировать семейный бюджет, высчитывать проценты по кредитам и понимать уровень переплаты, делать более выгодные покупки и видеть экономию. Кроме того, умение считать в уме положительно сказывается на имидже интеллектуальных способностей и выгодно выделяет человека среди окружающих его «гуманитариев».

    В дополнение к этому можно уверенно сказать, что устный счет служит отличной тренировкой мышления. Согласитесь: если человек будет месяцами сидеть на диване и выходить из дома разве что в магазин, через некоторое время он заплывет жиром, наберет вес и серьезно ухудшит свое здоровье. Точно так же и с мозгом – если им не пользоваться, он перестанет работать должным образом и просто-напросто атрофируется.

    Так вот практика счета в уме как раз и не дает мозгу «набрать вес и заплыть жиром». Именно поэтому мы считаем, что данный «мягкий» навык требует развития и тренировки, и именно для этого мы и создали наш курс.

    Содержание:

    Однако чтобы более конкретно указать на важность умения считать в уме, а также на возможность овладеть этим умением, мы хотим познакомить вас с нашим курсом подробнее.

    Цели и задачи курса

    Задача курса состоит не просто в том, чтобы познакомить вас с понятием устного счета, обучить интересным техникам и приемам и научить считать в уме. На самом деле преследуются значительно большие цели. Перечислим лишь несколько наиболее существенных:

    Тренировка внимания и концентрации. Устный счет требует активизации многих интеллектуальных способностей, в том числе и умения сосредотачиваться на решении сложных задач, требующих времени. Чем больше вы будете практиковаться, тем более гибким и податливым будет ваше мышление и тем лучше вы будете сосредотачиваться, причем на совершенно любых задачах.
    Тренировка логического мышления. Устный счет, логика и последовательность мыслей связаны друг с другом очень тесно. Именно благодаря последним вы можете без проблем и очень даже быстро определить, что выйдет дешевле: 10 упаковок семян чиа весом 150 граммов по 280 рублей или 7 упаковок весом 180 граммов по цене 315 рублей. Порой даже нужно не столько считать, сколько рассуждать логически.
    Тренировка аналитического мышления. Считая, к примеру, на калькуляторе, мы, строго говоря, выполняем всего лишь одно простое действие – нажимаем на клавиши счетного устройства или сенсор смартфона. Если же мы считаем в уме, мы и производим и вычисления, и анализируем полученные данные, и продолжаем считать дальше, если это необходимо, а затем делаем заключительные выводы.
    Борьба с зависимостью от гаджетов. Высокотехнологичные устройства заполонили нашу жизнь. Многие не в состоянии посчитать в уме, сколько будет 37-18, не говоря уже о том, что глаза, руки и даже мысли огромного количества людей сосредоточены лишь на гаджете, которым они владеют. Устный счет не только помогает активизировать мышление, но и на время отвлекает от использования технологий и мотивирует к применению своего главного устройства – мозга.
    Профилактика болезней мозга. Неочевидно, неправда ли? Между тем, ученые уже давно установили, что отсутствие интеллектуальной деятельности провоцирует множество недугов, связанных с мозгом (болезнь Альцгеймера, деменция и т.д.) Если же вы будете чаще считать в уме, вы тем самым будете чаще задействовать свой мозг и нагружать его работой, что позволит предупредить серьезные проблемы.

    Думаем, что этого более чем достаточно, чтобы в общих чертах понять, для чего нужно уметь считать в уме. Но что если копнуть чуть глубже и разобраться в вопросе подробнее?

    Что такое устный счет и зачем он нужен?

    Устный счет – процесс произведения математических операций в уме, т.е. без использования вспомогательных устройств, таких как калькуляторы, компьютеры, телефоны, смартфоны и т.п., а также без сторонних приспособлений, таких как ручка и бумага. Устный счет объединяет в себе представления человека о числах, знание арифметических алгоритмов и умение выполнять математические операции.

    Но зачем же современному человеку уметь считать в уме, если перед ним открыто столько возможностей этого не делать? К тому же сегодня устный счет все чаще оказывается ненужным, особенно когда дело касается нынешних школьников, выросших с планшетами в руках. Но тут важно вспомнить о том, что как только мы перестаем считать в уме, мы перестаем развиваться, и это касается не только подрастающего поколения.

    Все мы знаем, что мозг составляют два полушария. Правое отвечает за интуитивное мышление, художественное восприятие и творчество. Левое же отвечает за логику, речь, память, аналитику. И чем больше в мозге нейронных связей между полушариями, тем полноценнее и гармоничнее он развит. А каким образом можно развивать эти межполушарные связи? Именно таким способом и является устный счет.

    Цель ментальной арифметики – натренировать мозг человека на максимально быструю обработку информации. И эти тренировки дают свою плоды, ведь благодаря специальным заданиям гармонично развиваются оба полушария мозга, вследствие чего намного легче и проще воспринимается как гуманитарная, так и техническая информация.

    Особое внимание в ментальной арифметике уделяется именно устному счету, служащему эффективным тренажером для мозга. И не нужно быть гением, чтобы понять, какие преимущества имеет развитый мозг и развитое мышление. Они пригождаются везде, всегда и в любой области жизни.

    Посему можно заключить, что такой, казалось бы, «простенький» или «обычный» навык, как умение считать в уме, способен повлиять на всю жизнь человека, его успехи, жизненные результаты и даже личные качества. Так что если все это имеет для вас значение, предлагаем узнать, как научиться устному счету.

    Как научиться устному счету?

    Есть люди, которые умеют совершать несложные арифметические операции в уме. Умножить двузначное число на однозначное, умножать в пределах 20, перемножить два небольших двузначных числа и т.д. – все эти действия они могут производить в уме и достаточно быстро, быстрее среднего человека. Часто этот навык оправдан необходимостью постоянного практического использования. Как правило, люди, которые хорошо считают в уме, имеют математическое образование или, по крайней мере, опыт решения многочисленных арифметических задач.

    Несомненно, опыт и тренировка играют важнейшую роль в развитии любых способностей. Но навык устного счета не опирается на один лишь опыт. Это доказывают люди, которые, в отличие от вышеописанных, способны считать в уме гораздо более сложные примеры. Например, такие люди могут умножать и делить трехзначные числа, совершать сложные арифметические операции, которые не каждый человек и в столбик сможет посчитать.

    Что же необходимо знать и уметь обычному человеку, чтобы овладеть такой феноменальной способностью? На сегодняшний день существуют различные методики, помогающие научиться быстро считать в уме. Изучив многие подходы к обучению навыку считать устно, можно выделить три основных составляющих данного навыка:

    Нужно отметить, что третий фактор имеет ключевое значение. Не обладая необходимым опытом, вы не сможете удивить окружающих быстрым счетом, даже если вы знаете самый удобный алгоритм.

    Однако не стоит недооценивать важность первых двух составляющих, поскольку, имея в своем арсенале способности и набор нужных алгоритмов, вы сможете «переплюнуть» даже самого опытного «счетовода», при условии, что вы тренировались одинаковое время.

    Наряду с этим, и обучаться устному счету лучше всего, используя для этого правильную и эффективную систему. С учетом этой системы и разработан наш курс, и сейчас будет логичным вкратце познакомить вас с содержанием его уроков.

    Уроки устного счета

    Уроки устного счета, представленные в нашем курсе, направлены именно на развитие трех вышеназванных составляющих. Вот их краткое описание:

    Урок 1. Внимание и концентрация

    Чтобы научиться считать в уме по-настоящему быстро, необходимо уметь концентрироваться на конкретном примере. Этот навык полезен не только для совершения математических операций, но и для решения любых жизненных задач. Умение быть внимательным в нужный момент – этот навык, который выделяет великих ученых, спортсменов, политиков, несомненно, пригодится и вам.

    Урок 2. Простые арифметические закономерности

    Чтобы уметь решать сложные арифметические задачи, нужно для начала усвоить некоторые базовые закономерности. От того, как быстро вы сможете считать простейшие примеры, напрямую зависит ваше умение быстро выполнять более сложные математические операции. По сути, это можно считать базой для всего последующего обучения.

    Урок 3. Традиционное умножение в уме

    В этом уроке мы рассмотрим, как можно умножать двузначные числа, используя традиционные методы, которым нас обучают в школе. Некоторые из этих методов могут позволить вам быстро перемножать в уме двузначные числа при достаточной тренировке. Знать эти методы полезно, однако важно понимать, что это лишь вершина айсберга. В данном уроке рассмотрены наиболее популярные приемы умножения двузначных чисел.

    Урок 4. Частные методики умножения двузначных чисел до 30

    Способы умножения двузначных чисел хороши тем, что они универсальны для любых чисел, и при хорошем навыке могут позволить вам достаточно быстро прийти к правильному ответу. Однако эффективность умножения некоторых двузначных чисел в уме может быть выше за счет меньшего количества действий при использовании специальных алгоритмов. В этом уроке вы узнаете, как можно быстро умножать любые числа до 30. Здесь представлены специальные методики, в том числе и введение в использование опорного числа.

    Урок 5. Опорное число при умножении чисел до 100

    Наиболее популярной методикой умножения больших чисел в уме является прием использования так называемого опорного числа. Опорное число при умножении – это число, к которому близко находятся оба множителя и на которое удобно умножать. При умножении чисел до 100 опорными числами удобно использовать все числа кратные 10, а особенно 10, 20, 50 и 100. В уроке вы познакомитесь с данной методикой и научитесь сами ее применять.

    Урок 6. Умножение в уме любых чисел до 100

    Чтобы умножать любые числа до 100 в уме, важно быстро подобрать нужный алгоритм. Для удобства этого подбора в данном уроке выделены наиболее эффективные случаи для каждой методики умножения. В уроке будут рассмотрены как универсальные методики (подходящие для любых чисел), так и частные (удобные для конкретных случаев).

    Урок 7. Возведение в квадрат в уме

    Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей. В этом уроке разобраны методики и алгоритмы, позволяющие научиться этому навыку.

    Также в нашем курсе представлены дополнительные материалы, помогающие тренировать и развивать умение считать устно:

    Книги, учебники и ссылки на материалы по устному счету

    К сожалению, в Интернете далеко не всегда удается найти качественные материалы, посвященные именно обучению счету в уме. Однако есть ряд интересных книг и сайтов, связанных с вопросами устного счета. С некоторыми из них вы и сможете познакомиться поближе, изучив данный раздел.

    Дополнительные материалы по устному счету

    Уместить в один курс всю важную и нужную информацию очень проблематично. Но она, несомненно, нужна, так что вы сможете углубить свои знания по рассматриваемой теме. В этом разделе вы найдете небольшую подборку полезных материалов (а именно эффективных обучающих программ и статей), которые помогут вам лучше изучить отдельные вопросы.

    Далее предлагаем познакомиться с краткой инструкцией по прохождению курса.

    Как проходить курс?

    Уроки данного курса мы настоятельно рекомендуем проходить последовательно, не пропуская ни один из них, подробно рассматривая каждую тему и выполняя все практические указания. Лучше всего, если после изучения предлагаемых примеров вы будете придумывать несколько своих. Это позволит вам лучше понять и закрепить материал.

    Если вам что-либо непонятно, перечитайте урок еще раз. Для более надежного закрепления материала в памяти советуем по окончании курса еще раз вернуться к наиболее сложным для вас темам. И, конечно же, по завершении обучения не примените возможностью познакомиться со всеми дополнительными материалами.

    Цитаты известных людей о математике

    Теперь же мы хотим, чтобы вы немного отдохнули перед основной работой. Ниже мы подобрали несколько цитат известных людей об умении считать. Пусть их слова станут для вас дополнительной мотивацией и еще раз напомнят о том, как важна математика:

    Математика – это язык, на котором написана книга природы.


    Галилео Галилей

    Часто говорят, что цифры управляют миром; по крайней мере нет сомнения в том, что цифры показывают, как он управляется.


    Иоганн Вольфганг фон Гете

    В математике есть своя красота, как в живописи и поэзии.


    Николай Жуковский

    Рано или поздно всякая правильная математическая идея находит применение в том или ином деле.


    Алексей Крылов

    Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей работе.


    Михаил Калинин

    Первое условие, которое надлежит выполнять в математике, – это быть точным, второе – быть ясным и, насколько можно, простым.


    Готфрид Лейбниц

    Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает на­стойчивость и упорство в достижении цели.


    Алексей Маркушевич

    Если вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи, то решайте их!


    Дьердь Пойа

    Счет и вычисления – основа порядка в голове.


    Иоганн Генрих Песталоцци

    Устройство нашего мира непостижимо без знания математики.


    Роджер Бэкон

    А сейчас вы можете проверить, насколько быстро вы считаете в уме:

    Напоминаем, что для полноценной работы сайта вам необходимо включить cookies, javascript и iframe. Если вы ввидите это сообщение в течение долгого времени, значит настройки вашего браузера не позволяют нашему порталу полноценно работать.

    Эффективный счёт в уме или разминка для мозга

    Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.
    Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно. Для его учеников не было особой проблемой посчитать подобный пример в уме:

    Используем круглые числа

    Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

    Т.к. на 10, 100, 1000 и др. круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.
    Еще пример:

    Упростим умножение делением

    При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):

    Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4. Например,

    Теперь не кажется невозможным умножить в уме 625 на 53:

    Возведение в квадрат двузначного числа

    Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения. Остальные квадраты можно посмотреть в нижеприведённой таблице:

    Приём Рачинского заключается в следующем. Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,

    В общем случае (M — двузначное число):

    Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые:

    Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться.
    И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

    Умножение двузначных чисел

    Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.
    Пусть даны два двузначных числа, у которых сумма единиц равна 10:

    Составив их произведение, получим:

    Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к. 7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.
    Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:

    У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.
    48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,
    99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит,
    Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:

    Тогда предыдущий пример можно вычислить немного проще:

    Вместо заключения

    Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать голосовую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

    Использованная литература:
    «1001 задача для умственного счёта в школе С.А. Рачинского».

    Как научиться быстро считать в уме – способы и техники

    Нюансы, которые следует учитывать

    Чтобы научиться умножать двузначные числа или складывать дроби, придется потратить достаточно много времени. Однако для более быстрого обучения важно концентрировать внимание на трех основных моментах, без которых время будет потрачено впустую:

    1. Концентрация внимания. Процесс обучения будет куда более эффективным, если математик научится фокусировать свое внимание на той задаче, которую выполняет, ведь очень часто приходится отвлекаться на различные внешние факторы, которые не позволяют быстро посчитать или сложить в уме сложные числа. Чтобы такого не происходило, важно научиться концентрироваться на выполнении лишь одной задачи за один раз. Для этого стоит найти для место, где никто не будет мешать, а также постараться отбросить все мысли о работе, личной жизни, планах на будущее и прочем.
    2. Формулы. Чтобы производить вычисление даже сложных математических уравнений в уме, придется запомнить основные формулы и теоремы, по которым это можно сделать. Само собой, чтобы найти неизвестную переменную, иногда можно использовать и банальный метод подбора, однако такой способ является гораздо более сложным. Поэтому важно выучить всю теоретическую информацию, которую можно будет использовать: формулу дискриминанта, теорему Виета и прочие математические хитрости, с помощью которых процесс счета упрощается в несколько раз.
    3. Практика. Как бы это парадоксально ни звучало, но чтобы освоить технику быстрого счета в уме, необходимо для начала научиться выполнять те же задачи на листке бумаги. Ведь записывая выполнение того или иного упражнения, можно всегда посмотреть, где именно была совершена ошибка в процессе тренировки и сделать кое-какие выводы. Как только арифметик научится легко решать сложные примеры в тетради, самое время переходить на устный счет.

    Как только все правила и теоремы будут запомнены, а человек научится не только решать сложные задачи на листке бумаги, но и концентрировать свое внимание, можно приступать к процессу обучения устному счету. Под каждое математическое действие существует свой особый прием и даже несколько тренажеров, позволяющих освоить технику гораздо быстрее.

    Вот и польза от интернета

    Чтобы научить ребенка считать в уме, можно скачать ему на телефон специальное приложение, в котором есть огромное количество различных примеров, на решение которых дается от 2 до 5 секунд. Само собой, можно попытаться составить уравнения и задачи самому, однако практика показывает, что в большинстве случаев они получаются крайне однообразными и не несут большой пользы. Также существуют специальные сайты, которые позволяют своим посетителям решать уравнение и сложные задачки в режиме онлайн. Используя такие платформы, самое главное — подобрать под себя правильный уровень сложности.

    Чтобы система обучения приносила как можно большую пользу, важно понять, что вовсе не обязательно часами сидеть за примерами или пытаться решить сложные задачи сразу в уме. Ментальный счет — это долгий и кропотливый процесс, который не терпит спешки, и чтобы учиться правильно, достаточно уделять примерам от 5 до 10 минут в день. В противном случае голова будет напрягаться, а ученик начнет совершать глупейшие ошибки. Со временем даже такое «микрообучение» приведет к потрясающим результатам. Нужно лишь набраться терпения и практиковаться согласно рекомендациям математиков.

    Сложение двузначных и трехзначных чисел

    Как в первом классе детей учили быстро складывать и вычитать в уме однозначные числа? Правильно, позволяли для этого использовать пальцы. Ну а умножение и деление были освоены благодаря специальной таблице. Однако большинство взрослых, решивших научиться быстро считать в уме любые числа, как правило, умеют проводить эти действия не только с однозначными, но и с двузначными числами. В этом случае практиковаться будет значительно легче.

    Однако если подросток не может сложить два двузначных числа, то сначала придется освоить именно эту методику, ведь от нее все и отталкивается. Как это сделать? Достаточно просто разбить двузначное число на десятки и единицы. То есть если перед учеником стоит пример 65+18, то необходимо каждое число сначала разложить: 65=60+5, 18=10+8. После этого складываем в уме десятки, а уже потом единицы: 60+10=70, 5+18=13. Если в процессе получается еще одно двузначное число, которое будет всегда состоять из одного десятка, то достаточно лишь прибавить сначала его, а уже потом — все имеющиеся единицы: 70+10=80, 80+3=83. Все довольно просто.

    Однако когда речь заходит о трехзначных числах, то большинство людей почему-то сразу же входят в ступор, хотя методика здесь практически ничем не отличается от той, которая уже известна. Для начала необходимо разбить основное число на сотни, десятки и единицы, после чего начать складывать их между собой. Вот небольшой пример: 528+376. Действовать нужно по тому же алгоритму, что и ранее:

    • Разбить числа: 528=500+20+8, 376=300+70+6.
    • Сложить сотни: 500+300=800.
    • Сложить десятки: 20+70=90.
    • Сложить единицы 6+8=14.
    • Сплюсовать все, что есть: 800+90+10+4=800+100+4=900+4=904.

    Иногда, складывая десятки, также может получаться число больше сотни. Пугаться в этом случае не стоит. Достаточно будет просто прибавить одну сотню к уже имеющимся, после чего проводить арифметические действия с оставшимися десятками. Самое главное — не ошибиться в процессе.

    Особенности вычитания

    В математике существует всего два «полноправных» действия — сложение и умножение. Вычитание и деление являются обратными от этих двух. Кроме того, их всегда можно заменить умножением, подставив число «x», или сложением, подставив знак минус к неизвестному слагаемому. Именно поэтому, чтобы научиться вычитанию, сперва необходимо научиться складывать числа. Ведь в любой момент можно просто поменять в уме переменные и проверить правильность решения с помощью «x». Методика вычитания трехзначных чисел практически ничем не отличается от сложения. Вот небольшой пример: 553−192, а также подробный разбор:

    • Разбить имеющиеся числа на сотни, десятки и единицы: 500=500+50+3, 192=100+90+2.
    • Провести вычитание с сотнями: 500−100=400.
    • Вычесть десятки, заняв одну сотню: 150−90=60.
    • Вычесть единицы: 3−2=1.
    • Сложить остатки, не забыв о заемных сотнях или десятках: «300+60+1=361».

    То есть даже в вычитании будет обязательно присутствовать сложение. Основная сложность расчета таких примеров заключается в постоянной необходимости занимать десятки. Однако если проводить такую тренировку ежедневно, то со временем считать трехзначные числа будет ненамного сложнее, чем двухзначные. Самое главное — верить в себя и собственные силы.

    Секреты умножения

    Вот человеку нужно посчитать, находясь возле кассы, сколько же будет стоить 4 килограмма клубники по 183 рубля. Для этого он вытаскивает из кармана телефон и долго ищет в меню калькулятор. Однако куда быстрее будет посчитать все в уме. Самое главное — знать методику, которая позволяет это делать максимально правильно, а также как можно больше практиковаться. Алгоритм действий выглядит следующим образом.

    • Разложить основное число, как и в случае с умножением: 183=100+80+3.
    • Умножить число 4 на каждое имеющееся слагаемое: 100*4=400, 80*4=8*4*10=32*10=320, 3*4=12.
    • Сложить все имеющиеся числа: 400+320+12=700+32=732.

    Ничего сложного в этом нет, не говоря уже о том, что в умножении существует довольно много приемов, позволяющих провести операцию гораздо быстрее. К примеру, если человеку необходимо умножить какое-то число на 25, то достаточно просто разделить его на 4, после чего умножить на 100. Вот небольшой пример: 400*25=400/4*100=100*100=10000. Почему именно 4 и 100? Просто число 25 было замещено десятичной дробью ¼, ведь 25 — это 1 часть из 4 у сотни. Так что подобным приемом можно пользоваться, если необходимо быстро умножить что-то на «четвертак».

    Сложности деления

    Деление — самое сложное арифметическое действие, которое крайне трудно совершать в уме. Однако существует одна методика, которая является практически беспроигрышной. Как уже говорилось ранее, деление не является самостоятельным действием, поскольку оно обратное от умножения. Ведь что такое 32:8? Правильно: «x*8=32». Ну а по таблице умножения всем хорошо известно, что вместо переменной необходимо поставить число 4. Таким приемом можно пользоваться и для того, чтобы научиться быстро считать в уме.

    Взрослому человеку это не составит большого труда, а вот ребенку придется сперва познакомиться с тем, что такое неизвестные переменные и как их искать.

    Если человек научился проводить умножение с трехзначными числами в уме, то ему не составит особого труда для того, чтобы разделить эти числа. Вот небольшой пример: 795:3. Казалось бы, что посчитать его крайне трудно, но, чтобы упростить задачу, можно разбить его на множители, а также ввести переменные:

    • Разбить число 795 на слагаемые, с которыми легко провести деление: «795=600+195».
    • Поделить число 600 на 3 и держим в уме ответ: 200.
    • Разделить число 195 на 3, но здесь необходимо также разделить его на слагаемые: 195=150+45.
    • Поделить крупное число на 3: 150_3=50 и прибавляем ответ к имеющемуся: 200+50=250.
    • Не зная таблицы деления, ввести переменную «x» для оставшегося числа 45=x*3. Получается, что x=15.
    • Сложить остатки и проверить ответ умножением: 250+15=265, 265*3=200*3+60*3+5*3=795″ — все сходится.

    Таким образом, чтобы облегчить процесс деления, можно воспользоваться не только методом разложения числа на слагаемые, но и вводя новую переменную. Особенно полезным этот навык окажется для того, кто проводит математические действия с более интересным и сложными примерами. Несколько месяцев практики обязательно принесут плоды, но следует взять себе за привычку проверять решение не с помощью калькулятора, а умножения.

    Высчитывание процентов

    Многие люди впадают в ступор, когда их просят найди 6 процентов от 253. Однако если знать основные математические правила, то в этом нет абсолютно ничего сложного. Причем, чтобы научиться проводить все действия в уме, не потребуется нескольких лет практики. Достаточно лишь следовать определенному алгоритму действий:

    • Найти 1% от имеющегося числа. Для этого его необходимо разделить на 100: «253:100=2,53».
    • Разложить получившиеся число на слагаемые, которые будет легко умножить на 6: 2,53=2+0,5+0,03.
    • Провести умножение: 2*6=12, 0,5*6=½*6=3, 0,03*6=0,18.
    • Сложить получившиеся значения: 12+3+0,18=15+0,18=15,18.

    Чтобы научиться считать числа в уме, вовсе не обязательно быть вундеркиндом или потратить годы практики. Достаточно просто знать основные правила и формулы, которые позволяют упростить те или иные действия, а также уметь грамотно заменить некоторые переменные. Ну и, пожалуй, важнее всего — концентрироваться на выполнении определенной задачи. Если решать такие примеры каждый день, то со временем от калькулятора можно будет отказаться вовсе, что очень удобно, ведь даже в век информационных технологий полностью положиться на машины нельзя.

    Как быстро считать в уме: приемы устного счета больших чисел

    Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

    Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а минимум двухзначными и трехзначными числами.

    После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

    Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью “Пределы для чайников” в нашем блоге.

    Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

    Гаусс и устный счет

    Карл Фридрих Гаусс

    Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

    По его собственным словам, он научился считать раньше, чем говорить. Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

    В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

    Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

    Сложение чисел в уме

    Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

    Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

    Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

    Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

    Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6. Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

    356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

    Вычитание чисел в уме

    Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

    Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

    Теперь считаем: 528-300-20-1=228-20-1=208-1=207

    Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

    Умножение чисел в уме

    Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

    Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

    Таблица умножения

    Умножение многозначных чисел на однозначные

    Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

    528=500+20+8

    528*6=500*6+20*6+8*6=3000+120+48=3168

    Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

    Умножение двузначных чисел

    Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

    Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

    28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

    Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

    • 79*50=(70+9)*50=3500+450=3950
    • 79*7=(70+9)*7=490+63=553
    • 3950+553=4503

    Умножение на 11

    Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

    Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число – результат умножения исходного числа на 11.

    Проверим и умножим 54 на 11.

    • 5+4=9
    • 54*11=594

    Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами – эта хитрость работает!

    Возведение в квадрат

    С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

    Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

    Проверим! Возведем в квадрат число 75.

    • 7*8=56
    • 5*5=25
    • 75*75=5625

    Раньше все считали без калькуляторов

    Деление чисел в уме

    Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

    Деление на однозначное число

    При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

    Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

    6144:8=(5600+544):8=700+544:8

    Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

    544:8=(480+64):8=60+64:8

    Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

    6144:8=700+60+8=768

    Деление на двузначное число

    При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

    При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

    Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет , так как 5*6=30. Действительно, 1325*656=869200.

    Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

    Сколько будет 4424:56?

    Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

    56*80=4480

    Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4. Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления может быть либо число 74, либо 79. Проверяем:

    79*56=4424

    Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

    Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

    Полезные советы

    В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

    • Не забывайте тренироваться каждый день;
    • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
    • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
    • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

    Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

    • Контрольная работа от 1 дня / от 120 р. Узнать стоимость
    • Дипломная работа от 7 дней / от 9540 р. Узнать стоимость
    • Курсовая работа 5 дней / от 2160 р. Узнать стоимость
    • Реферат от 1 дня / от 840 р. Узнать стоимость

    Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

    Как научиться быстро считать в уме взрослому человеку

    Цифры окружают нас повсюду. Даже самые простые бытовые задачи, такие как поход в магазин или оплата коммунальных счетов, требуют от человека умения считать. Несмотря на то, что современный рынок изобилует различными гаджетами, которые существенно упрощают работу с числами, умение самостоятельно производить вычисления в уме все также важно. Но какие методики устного счета подходят для взрослых лучше всего?

    Польза устного счета

    Люди использовали числа еще с древних времен. Даже тогда, еще несколько тысяч лет назад, самые разные виды деятельности предполагали умение считать. По мере развития человечества и такая наука, как математика, постепенно усложнялась. В современном мире, где множество специальностей предполагает работу с большим объемом чисел, умение устно производить вычисления особенно полезно.

    Сегодня существует множество подходов, которые позволяют складывать, вычитать, умножать и делить даже двузначные и трехзначные числа. Но большая часть этих методов так и не получила массового признания, и у этого есть свои причины.

    Дело в том, что большинство способов счета многозначных чисел являются узкоспециализированными. Так метод умножения в уме любого числа на 11 имеет свои правила, которые не распространяются на другие множители. К тому же, чем больше знаков в каждом из выражений, тем сложнее производить с ними арифметические операции. Так и получается, что эти способы вычислений применяются узким кругом лиц и только в некоторых ситуациях.

    Подобные математические хитрости не могут считаться полноценной системой устного счета. Но есть и кардинально другие методы, доказавшие свою эффективность на примере многих людей. Одной из самых популярных методик быстрого счета в уме по праву считается ментальная арифметика. Она является не только средством для более продуктивных вычислений, но и способом развить свои интеллектуальные способности.

    Существует мнение, что данная методика подходит исключительно детям, так как в раннем возрасте ее проще освоить, но это не совсем так. Ментальная арифметика актуальна и для взрослых, которые хотят освоить быстрый счет в уме и вывести свои интеллектуальные способности на новый уровень. Наряду с умением устно производить операции с большими числами, эта методика несет в себе и другие неочевидные плюсы. В чем же особенности данной программы?

    Ментальный счет

    Ментальная арифметика известна еще с древности. Ее основополагающим принципом является произведение вычислений на специальных счетах – абакусе. Весь процесс обучения условно можно разделить на два этапа. Сначала ученик осваивает принцип работы абакуса, а затем учится представлять его в своем воображении. Именно на воображаемых счетах и производятся вычисления. Так и удается добиться умения выполнять операции с числами без использования подручных средств.

    фдНесмотря на то, что эта методика не кажется такой уж сложной, ее освоение требует времени. Но она является отличным способом развить свой внутренний потенциал, и дело далеко не только в умении быстро считать. Специалисты отмечают, что эта программа отлично развивает интеллект человека благодаря тому, что задействует оба полушария мозга.

    Люди, которые освоили ментальную арифметику, производят вычисления не так, как большинство из нас привыкло. Сначала числовое выражение обрабатывается левым полушарием мозга, отвечающим за логику и анализ, а затем передается правому, отвечающему за креативное мышление и воображение. Именно правое полушарие мозга позволяет представлять в сознании абакус и производить вычисления на нем. После того, как необходимая арифметическая операция произведена, ответ опять передается в левое полушарие, и теперь его можно озвучить.

    Основным секретом ментальной арифметики как раз и является налаживание межполушарных связей. Так удается добиться более продуктивной работы мозга, а значит и постепенного роста интеллектуальных способностей человека. Так даже для взрослых ментальная математика несет в себе целый ряд положительных моментов. Кроме навыков быстрого счета, она развивает:

    • внимание. Умение концентрироваться, не отвлекаясь на посторонние раздражители, можно и нужно тренировать, и вычисления на абакусе отлично этому способствуют.
    • память. Владение виртуальным абакусом позволяет складывать, вычитать, делить и умножать сразу несколько чисел подряд. Поэтому во время вычислений задействуются и те участки мозга, которые отвечают за память, ведь, чтобы не сбиться, приходится держать в уме до нескольких чисел сразу. Так стимуляция разных областей интеллекта развивает умственные способности.
    • воображение и креативное мышление. Наряду с умением работать с огромным количеством чисел, данная методика позволяет улучшить свой творческий потенциал. Так удается добиться разностороннего развития мозга благодаря всего одной программе.
    • скорость реакции. Устный счет предполагает умение производить операции с большим количеством чисел за короткие промежутки времени. Благодаря этому скорость реакции постепенно растет, а время отклика на новую часть задания сокращается.
    • многозадачность. Люди, которые в совершенстве освоили вычисления на воображаемом абакусе, могут одновременно считать и выполнять другие действия – декламировать стихотворение, петь песню или рисовать картину. Многозадачность, которая развивается благодаря данной методике, очень полезна в самых разных сферах жизни человека.

    Моторика рук для развития мозга

    Помимо развития интеллекта, данная методика скрывает и другие преимущества. Еще со школьной скамьи многие помнят, что левое полушарие контролирует работу правой руки, и наоборот. Счет на абакусе задействует пальцы обеих рук, а значит стимулирует работу сразу двух полушарий мозга. Благодаря этому эффективность воздействия ментальной арифметики на интеллектуальные способности человека еще больше растет.

    Улучшение моторики рук полезно и в повседневной жизни. Сегодня очень много видов деятельности, которые требуют хорошей подвижности и гибкости пальцев. Печать на компьютере, письмо, рукоделие, игра на музыкальных инструментах – перечень занятий, где важна моторика рук, очень велик. Поэтому можно с уверенностью сказать, что ментальная арифметика – это способ улучшить не только умственные, но и некоторые физические способности своего организма.

    Конечно, чтобы добиться видимого результата, придется приложить немало усилий. Далеко не у каждого есть время и силы разработать программу тренировок самостоятельно. К тому же, из-за быстрого ритма жизни, не всегда удается добиться необходимой самоорганизации. Именно поэтому большинство людей предпочитают посещать курсы ментальной арифметики. Но какие из них подходят лучше всего?

    Курсы ментальной математики для взрослых

    Саморазвитие и улучшение своих способностей в наши дни как никогда актуально. Но современный ритм жизни диктует нам свои условия – не всегда удается уделять время и своему основному роду деятельности, и дополнительным занятиям. Ситуация усугубляется, когда дело касается посещения каких-либо курсов на очной основе. Из-за высокой загруженности не всегда удается подобрать подходящий график занятий, да и время, которое тратится на дорогу, можно было бы потратить более полезно. Именно поэтому сейчас так популярно онлайн-обучение, позволяющее учиться новому прямо из дома, тем более, что для этого достаточно только компьютера и выхода в интернет.

    Так и ментальная арифметика для взрослых теперь стала еще более доступной. Возможность тренироваться по передовым методикам из любой точки земного шара позволяет учиться, работать, путешествовать, уделяя время саморазвитию. Учитывая то, что график и периодичность занятий теперь можно настроить индивидуально, такой формат образования подойдет каждому человеку, который хочет развить свои способности и научиться легко оперировать числами в уме.

    Читайте также:
    Как противостоять мужчине манипулятору?
  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: